MPP Calculus Problem Set 3

Due Thursday, August 29

1. Integration

- Note that if $g=x^2+\mathcal{C}$ then $f\equiv g'=2x$. Thus $\int f=x^2+\mathcal{C}$. That is, whenever we are integrating there is an implicit "constant of integration". However, we can ignore this nuisance if we consider the definite integral since $\int_a^b f=[x^2+\mathcal{C}]_a^b=[b^2+\mathcal{C}]-[a^2+\mathcal{C}]=b^2-a^2$. But you should always understand that integration and differentiation differ by a constant.
- Spivak Chapter 13: 7 (even), 8 (odd), 12, 33.
- Solve the following integrals by substitution (i.e. let w = h(x) and so dw = h'(x)dx). (Hint: $a^{-1} = 1/a$ for all $a \neq 0$ and $1 \cdot f = f$ for all f.)

1.
$$\int x\sqrt{1-x^2} dx$$

2.
$$\int \exp(e^x)e^x dx$$

3.
$$\int x^2 e^{-x^3} dx$$

$$4. \int \log(\log x) [x \log x]^{-1} dx$$

• Solve the following integrals by parts (i.e. $\int u dv = uv - \int v du$).

1.
$$\int x \log x dx$$

$$2. \int x^3 e^x dx$$

$$3. \int x^2 e^{-x} dx$$

2. Fundamental theorem of calculus

Recall: First FTC states if $F(x) = \int_a^{g(x)} f(t) dt$ then F'(x) = f(g(x))g'(x). And the Second FTC states if g' = f then $\int_a^b f = g(b) - g(a)$.

- Spivak Chapter 14: 11, 21.
- Find the derivatives of the following functions

1.
$$F(x) = \int_{10}^{x} \{1 + \exp[t^2 - 1]\} dt$$

2.
$$F(x) = \int_{3x^2}^{15} (\log t - f(t)) dt$$

3.
$$F(x) = \int_a^{\log(1+x^2)} f(w) dw$$

4.
$$F(x) = \int_{g(x^2)}^{500} zh(z)dz$$

3. Taylor polynomials

Recall Taylor's theorem states that any function can be approximated by a polynomial:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x - a)^k$$

- Find the fourth order Taylor polynomials for the following functions about the point a = 1:
 - 1. $f(x) = (1+x)^{-1}$
 - $2. f(x) = \exp(x)$
 - 3. $f(x) = \exp(e^x)$
- Find the approximate values of log(3) and e^2 without using a calculator.

4. Sequences

- Spivak Chapter 22: 3, 27 (b).
- Show that the sequence $\{1/n^2\}$ converges to zero directly from the definition of convergence. (Recall that a sequence $\{a_n\}$ is said to converge to 1 (i.e. $\lim_{n\to\infty}a_n=1$) if for every $\varepsilon>0$ there exists $M\in \mathbf{N}$ such that whenever n>M then $|a_n-1|<\varepsilon$.)
- Does the sequence $\left\{\frac{\log n}{n}\right\}$ converge or diverge?

5. Miscellaneous

- Show that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$
- Find the derivative of $F(x) = \int_3^{x} \log t dt \frac{1}{1 + \exp(1 + t^2)} dt$
- Suppose f is defined everywhere and that all its derivatives are continuous, in particular, f''' > 0. Show that f has at most two critical points.
- Sketch the graph of the function $f(x) = x^2 \frac{1}{x}$.