MPP Calculus Problem Set 3

Due Thursday, August 29

1. Integration

- Note that if $g=x^{2}+C$ then $f \equiv g^{\prime}=2 x$. Thus $\int f=x^{2}+C$. That is, whenever we are integrating there is an implicit "constant of integration". However, we can ignore this nuisance if we consider the definite integral since $\int_{a}^{b} f=\left[x^{2}+C\right]_{a}^{b}=\left[b^{2}+C\right]-\left[a^{2}+C\right]=b^{2}-a^{2}$. But you should always understand that integration and differentiation differ by a constant.
- Spivak Chapter 13: 7 (even), 8 (odd), 12, 33.
- Solve the following integrals by substitution (i.e. let $w=h(x)$ and so $\left.d w=h^{\prime}(x) d x\right)$. (Hint: $a^{-1}=1 / a$ for all $a \neq 0$ and $1 \cdot f=f$ for all f.)

1. $\int x \sqrt{1-x^{2}} d x$
2. $\int \exp \left(e^{x}\right) e^{x} d x$
3. $\int x^{2} e^{-x^{3}} d x$
4. $\int \log (\log x)[x \log x]^{-1} d x$

- Solve the following integrals by parts (i.e. $\int u d v=u v-\int v d u$).

1. $\int x \log x d x$
2. $\int x^{3} e^{x} d x$
3. $\int x^{2} e^{-x} d x$

2. Fundamental theorem of calculus

Recall: First FTC states if $F(x)=\int_{a}^{g(x)} f(t) d t$ then $F^{\prime}(x)=f(g(x)) g^{\prime}(x)$. And the Second FTC states if $g^{\prime}=f$ then $\int_{a}^{b} f=g(b)-g(a)$.

- Spivak Chapter 14: 11, 21.
- Find the derivatives of the following functions

1. $F(x)=\int_{10}^{x}\left\{1+\exp \left[t^{2}-1\right]\right\} d t$
2. $F(x)=\int_{3 x^{2}}^{15}(\log t-f(t)) d t$
3. $F(x)=\int_{a}^{\log \left(1+x^{2}\right)} f(w) d w$
4. $F(x)=\int_{g\left(x^{2}\right)}^{500} z h(z) d z$

3. Taylor polynomials

Recall Taylor's theorem states that any function can be approximated by a polynomial:
$f(x)=\sum_{k=0}^{\infty} \frac{f^{k}(a)}{k!}(x-a)^{k}$

- Find the fourth order Taylor polynomials for the following functions about the point $a=1$:

1. $f(x)=(1+x)^{-1}$
2. $f(x)=\exp (x)$
3. $f(x)=\exp \left(e^{x}\right)$

- Find the approximate values of $\log (3)$ and e^{2} without using a calculator.

4. Sequences

- Spivak Chapter 22: 3, 27 (b).
- Show that the sequence $\left\{1 / n^{2}\right\}$ converges to zero directly from the definition of convergence. (Recall that a sequence $\left\{a_{n}\right\}$ is said to converge to 1 (i.e. $\lim _{n \rightarrow \infty} a_{n}=1$) if for every $\varepsilon>0$ there exists $M \in \boldsymbol{N}$ such that whenever $n>M$ then $\left|a_{n}-1\right|<\varepsilon$.)
- Does the sequence $\left\{\frac{\log n}{n}\right\}$ converge or diverge?

5. Miscellaneous

- Show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
- Find the derivative of $F(x)=\int_{3}^{\int_{1}^{x} \log t d t} \frac{1}{1+\exp \left(1+t^{2}\right)} d t$
- Suppose f is defined everywhere and that all its derivatives are continuous, in particular, $f^{\prime \prime \prime}>0$. Show that f has at most two critical points.
- Sketch the graph of the function $f(x)=x^{2}-\frac{1}{x}$.

