MPP Calculus Problem Set 1

1. Basic properties of numbers

Spivak Chapter 1 exercises: 4 (odd), 11 (even), 17 (all), and 25.

2. Numbers of various sorts

2.1. Prove using mathematical induction that

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

Hint: Recall that you need to verify $P(1)$ and then you assume that the formula is true for an arbitrary $k \in$ \boldsymbol{N}, and then you need to verify the truth of the formula for the case of $k+1$.
2.2. Show that $\sqrt{2}+\sqrt{2}$ is irrational.

* Educational: Suppose that there are finitely many prime numbers (from which we will get a contradiction). That is, suppose that are M prime numbers (where M is finite) and let $P_{1}, P_{2}, \ldots, P_{M}$ represent all the prime numbers in existence. Now define a new number

$$
\begin{equation*}
P^{*}=P_{1} \cdot P_{2} \cdot \ldots \cdot P_{M}+1 \tag{2}
\end{equation*}
$$

If P^{\star} is prime then this contradicts the conjecture that there are only M prime numbers. Moreover, if P^{\star} is not prime, then by definition we can decompose it into its prime factors; however, none of P_{1} through P_{M} can divide P^{\star} (since they would leave a remainder of 1), and thus there must be some prime number not included in the collection $\left\{P_{1}, \ldots, P_{\mathrm{M}}\right\}$ that divides P^{*}.

3. Functions

Spivak Chapter 3 exercises: 3 (all).

4. Graphs

Spivak Chapter 4 exercises: 3 (odd), 4 (all), 17 (odd).

5. Limits

Spivak Chapter 5 exercises: 1 (all), 2 (all), 39 ((i), (v), (vi), (vii)).

Find the following limits involving the log and exp functions:
5.1.1. $\lim _{x \rightarrow 1} \exp (x) /[1-\exp (x)]$
5.1.2. $\lim _{x \rightarrow 0} \log (x+1) / \log [1+\exp (x)]$
5.1.3. $\lim _{x \rightarrow 0} \frac{\left[x^{n}-\exp (x)+\log \left(x^{n}\right)\right]}{\left\{\exp \left[x^{2}+1\right]-\log \left[x^{2}+1\right]\right\}}$
5.1.4. $\lim _{x \rightarrow 0}\left\{\frac{3 x+5}{x+1}\right\}^{x}$ Hint: note the title of these exercises.
5.1.5. $\lim _{x \rightarrow 1}\left\{\log \left[5+3 x^{2}\right]-\log \left[a+x^{2}\right]+\exp \left[-2 x^{2}\right] \exp (9 x)\right\}$

Verify if the following limits exist. (Hint: If the limit of a function exists what do we know about its limiting value from either side?)
5.2.1. $\lim _{x \rightarrow 0} \frac{1}{\left[3+2^{1 / x}\right]}$
5.2.2. $\lim _{x \rightarrow 0} \frac{\left[1+2^{1 / x}\right]}{\left[3+2^{1 / x}\right]}$
5.2.3. Using the $\delta-\varepsilon$ method of limits show that

$$
\begin{equation*}
\lim _{x \rightarrow 2} x^{2}-4=0 \tag{3}
\end{equation*}
$$

Hint: If the limit as x approaches 2 of $x^{2}-4$ is really zero, then for every $\delta>0$ we can find $\varepsilon>0$ such that whenever $0<|\mathrm{x}-2|<\delta$ then $\left|\left(x^{2}-4\right)-0\right|<\varepsilon$. Moreover, we can factor $x^{2}-4$, and to ensure that ε is not too large assume $\delta<1$.

6. Continuity

Spivak Chapter 7 exercises: 1 (odd), 10.
6.1. Show that $f(x)=|x|$ is continuous everywhere.
6.2. Find the discontinuities of the following functions:

1. $f(x)=1 / x$
2. $f(x)=(x-1) /[(x+3)(x-2)]$
3. $f(x)=(x+2)(x-1) /(x-3)^{2}$

7. Least upper bounds

Spivak Chapter 8 exercises: 1 (even).

