
MPP Calculus
Take-Home Exam Solutions

1 Continuity

� Suppose that f assumes only rational values over an interval; moreover, it assumes two distinct values
over the interval. Prove that f must be a discontinuous function.

Proof. Suppose that f is continuous. Then by the intermediate value theorem (IVT) f must assume all
the values in between the two distinct rational numbers. Since the irrational numbers are dense (i.e., there
exists an irrational number between any two distinct rational numbers) this means that f would have to
assume irrational values, too.

� Find the points of discontinuity of the following functions:

1.

f (x) =
1� log x
1 + log x

First note that f is de�ned only for x > 0. Now points of discontinuity are precisely when the
denominator is zero.

1 + log x = 0 (1)

) x = e�1 > 0: (2)

2.

f (x) =
1 + e�x

ex + log (1 + x)

First note that f is de�ned only for x > �1. Now points of discontinuity occur when the denominator
is zero.

ex + log (1 + x) = 0 (3)

) log (1 + x) = �ex (4)

Although this proves to be hard to explicitly solve we can guess a range for the value of x that satis�es
this equation. Since ex is always positive then �ex is always negative. Now note that log y is negative
for y 2 (0; 1). Thus conclude that x 2 (�1; 0).

3.

f (x) =
3x2 +

R
t log tdt

(1 + x)
R x
a
1
t dt

Note that the de�nition of Z x

a

1

t
dt = log x� log a: (5)

Thus f is de�ned only for x > 0. Moreover, the denominator is zero when x = a:

1



2 Rolle�s Theorem

Suppose that f is de�ned everywhere and that all its derivatives are continuous, in particular, f 000 < 0: Show
that f has at most two critical points.
Proof. Suppose that f has three (or more) distinct critical points. That is, suppose there exist x1, x2,

and x3 such that
f 0 (x1) = f

0 (x2) = f
0 (x3) = 0: (6)

By Rolle�s theorem this implies that there exist x4 2 (x1; x2) and x5 2 (x2; x3) such that

f 00 (x4) = f
00 (x5) = 0: (7)

Now applying Rolle�s theorem once again, this implies that there exists x6 2 (x4; x5) such that

f 000 (x6) = 0:

3 Graphing

Sketch the graphs of the following two functions and explicitly label all the points of interest (minima,
maxima, points of in�ection, roots, etc.):

f (x) =
x

1 + x
(8)

and

f (x) =
e�x

1 + ex
: (9)

For the �rst function note that f is unde�ned at the point x = �1: Then

lim
x!�1�

f (x) =1 and lim
x!�1+

f (x) = �1:

Furthermore, f has a horizontal asymptote

lim
x!1

f (x) = 1 = lim
x!�1

f (x) :

Now note that
f 0 (x) =

1

(1 + x)
2 > 0 (10)

and
f 00 (x) = � 2

(1 + x)
3 : (11)

The �rst derivative being positive tells us that the graph is everywhere increasing. The second derivative is
less than or greater than zero as x is greater than or less than �1.
For the second function note that it is everywhere positive since ex > 0 for all x. The �rst derivative of

the function is

f 0 (x) = � 2 + ex

(1 + ex)
2 < 0: (12)

Moreover, its second derivative is

f 00 (x) =
4ex + e�x + 3

(1 + ex)
3 > 0: (13)

Thus the graph of f is everywhere decreasing and convex.
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4 Inverse Functions

Find the inverse functions for the following two functions:

f (x) = 3
p
1 + log x (14)

and
f (x) =

1

x
: (15)

Also, be sure to state the domains for f and f�1.
The �rst function is de�ned only for x > 0: To �nd its inverse we set

x = 3
p
1 + log y ) y = f�1 (x) = exp

�
x3 � 1

�
: (16)

The inverse function is de�ned for all x. The inverse is well de�ned since f is 1� 1.
For the second function note that we have a point of discontinuity at x = 0. Note that f 0 < 0 for all

x 6= 0; and so the inverse is well de�ned and exists for all values of x 6= 0. Moreover, f�1 (x) = 1=x:

5 Di¤erentiation

Find the �rst and second derivatives of the following two functions:

f (x) =

Z 0

x2+2

p
1 + t2dt (17)

and
f (x) = x

h
1 + (log (1 + x))

3
i
: (18)

This merely tested whether you understood (or could keep track of) the rules of di¤erentiation (and a little
bit of FTC). For the �rst function we rearrange the limits of integration and then apply the FTC.

f (x) = �
Z x2+2

0

p
1 + t2dt (19)

) f 0 (x) = �2x
q
1 + (x2 + 2)

2
: (20)

To �nd f 00 apply the product rule and the chain rule.

f 00 (x) = �2
q
1 + (x2 + 2)

2 � 4x2
�
x2 + 2

� h
1 +

�
x2 + 2

�2i�1=2
: (21)

For the second integral

f 0 (x) = 1 + [log (1 + x)]
3
+

3x

1 + x
[log (1 + x)]

2 (22)

and
f 00 (x) =

3

1 + x
[log (1 + x)]

2
+ 2

3x

(1 + x)
2 log (1 + x) +

3

(1 + x)
2 [log (1 + x)]

2
: (23)
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6 Integration

Solve the following two integrals: Z 1

0

xe�xdx (24)

and Z 1

e

1

x log x
dx: (25)

For the �rst integral use IBP where we let u = x (which implies du = dx) and dv = e�xdx (which implies
v = �e�x). Then using the formula

R
udv = uv � vdu we getZ 1

0

xe�xdx =
�
�xe�x

�1
0
+

Z 1

0

e�xdx (26)

= �e�1 �
�
e�1 � 1

�
(27)

= 1� 2=e: (28)

For the second integral we use substitution, where we let w = log x so that dw = (1=x) dx: ThenZ 1

e

1

x log x
dx =

Z 1

e

1

w
dw (29)

= logw j1e =1: (30)

7 Taylor Polynomials

Find the Taylor polynomials of degree 4 for the following functions:

1.
f (x) =

1

1� x about a = 2:

f (x) = exp (ex) about a = 0:

This is straightforward. Simply recall the de�nition

P4;a (x) =
4X

k=0

f (k) (a)

k!
(x� a)k : (31)

For the �rst function note that

f (0) (2) = f (2) = �1
f (1) (2) = f 0 (2) = 1

f (2) (2) = �2
f (3) (2) = 6

f (4) (2) = �24:

Thus
P4;a=2 (x) = �1 + (x� 2)� (x� 2)2 + (x� 2)3 � (x� 2)4 : (32)
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For the second function note that

f (0) (0) = f (0) = e

f (1) (2) = f 0 (2) = e

f (2) (2) = 2e

f (3) (2) = 5e

f (4) (2) = 15e:

Thus,

P4;a=0 (x) = e+ ex+ ex2 +
5

6
ex3 +

15

24
ex4 (33)

= e

�
1 + x+ x2 +

5

6
x3 +

15

24
x4
�
: (34)

8 Sequences & Series

� Show that the sequence
�
1 + 1=n3

	
converges to 1 directly from the de�nition of convergence.

Proof. We claim that the sequence
�
1 + 1=n3

	
converges to 1 as n!1: Then for every " > 0 we need

to show that
��1 + 1=n3 � 1�� < " whenever n � N: That is, for any �xed " > 0 we want ��1=n3�� < ". It is clear

that for all n � N = 1="3 that this condition will be satis�ed.

� Find the sum of the sequences (i): f1=ng ; (ii) and
�
1=n3

	
:

The �rst sequence is not summable (it is the harmonic series) since log x is unbounded. For the second
sum use the integral

lim
A!1

Z A

1

1

x3
dx (35)

to verify that it is summable and that its sum is 3/2.

� Find the following limit:

lim
n!1

�
1� 3

n

�n
: (36)

Use the x = exp [log (x)] trick and then apply L�Hôpital�s rule.

lim
n!1

exp

�
n log

�
1� 3

n

��
= exp

"
lim
n!1

log
�
1� 3

n

�
1
n

#
(37)

= exp

�
lim
m!0

log (1� 3m)
m

�
(38)

= exp

�
lim
m!0

�3
1� 3m

�
(39)

= e�3: (40)
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9 Matrix Algebra

Given

A =

�
1 2
3 4

�
B =

24 1 2
6 3
5 4

35 C =

�
1 0 1
0 1 0

�
� Solve the following matrix operations (if they are indeed valid):

1. AB

Not conformable: (2� 2)� (3� 2) :

2. B + C

Not conformable

3. BAC

BAC =

24 7 10 7
15 24 15
17 26 17

35 (41)

4. (BAC)�1

The inverse does not exist since columns 1 and 3 are identical.

5. det (BAC)

Since the inverse does not exist we can conclude that its determinant is zero.

6. BA0

BA0 =

24 5 11
12 30
13 31

35 : (42)

Note that BA0 6= (BA)0 = A0B0:

� Use Cramer�s Rule to solve the following system

x1 + 2x2 + 3x3 = 4

2x1 + 3x2 � x3 = 1

x1 � 2x2 + 4x3 = �2

This is a straightforward application of Cramer�s rule,

xj =
detAj
detA

(43)

where Aj is the matrix formed by substituting the d vector into the jth column of the A matrix. Whence

x1 = �48
29

x2 =
49

29

x3 =
22

29
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10 Optimisation with Constraints

Solve the following optimisation problems:

1.
max
x1;x2

U (x1; x2) = x
2
1x
2
2 (44)

subject to the restriction

x1 +
3

2
x2 = 100: (45)

Although the objective function is not linear we can still use the method of Lagrange multipliers since
the constraint is linear and binding, and the fact that the objective is linear in log. Set up a Lagrangian
function

L = x21x
2
2 � �

�
x1 +

3

2
x2 � 100

�
(46)

and then compute the three FOCs:

@x1 : 2x1x
2
2 � � = 0 (47)

@x2 : 2x21x2 �
3

2
� = 0 (48)

@� : x1 +
3

2
x2 � 100 = 0 (49)

Then set

2x1x
2
2 =

4

3
x21x2 (50)

) x1 =
3

2
x2: (51)

Plug this back into the original constraint whence x�1 = 50 and x
�
2 = 100=3:

2.
min
K; L

rK + wL (52)

subject to the restrictions
K1=3L2=3 = 100: (53)

Use the fact that
K1=3L2=3 = 100 , 1

3
logK +

2

3
logL = log 100: (54)

Then write the Lagrangian

L = � (rK + wL)� �
�
1

3
logK +

2

3
logL� log 100

�
: (55)

The three FOCs are

@K : � r � �

3K
= 0 (56)

@L : � w � 2�

3L
= 0 (57)

@� :
1

3
logK +

2

3
logL� log 100 = 0 (58)
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Then use the fact that
�3rK = �3

2
wL ) K =

1

2

w

r
L: (59)

Plug this back into the constraint

1

3

�
log

1

2
+ log

w

r
+ logL

�
+
2

3
logL = log 100

) logL = log 100 + log
� w
2r

��1=3
) L� = 100

� w
2r

��1=3
:

3. Repeat question 2 with the modi�cation K1=3L2=3 � 100 and K � 0, L � 1000.
The condition K1=3L2=3 � 100 will bind since the production function is locally nonsatiated. Moreover,
if given w and r the level of L� is less than 1000 then the condition L � 1000 will bind. If L� is greater
than 1000 the condition does not bind and the solution above is adequate.

4.
min
x1;x2

4x1 + x2 (60)

subject to the restrictions

x21 � 4x1 + x2 � 1 (61)

�2x1 � 3x2 � �11 (62)

x1; x2 � 0 (63)

We have to use Kuhn-Tucker to solve this problem. Recall that minimisation is equivalent to max-
imising the negative of the objective function. Moreover, the maximisation constraints are of the form
gi (x) � ci.

Z = � (4x1 + x2)� �1
�
4x1 � x21 � x2 + 1

�
� �2 (2x1 + 3x2 � 11) : (64)

The Kuhn-Tucker conditions are

@Z

@xj
� 0 xj � 0 and xj

@Z

@xj
= 0

@Z

@�i
� 0 �i � 0 and �i

@Z

@�i
= 0

If the quali�cation constraint and the su¢ ciency theorem are satis�ed the above six equations implicitly
de�ne the solution to the minimisation problem. Indeed, since this is a two-variable system we can
�nd the solution graphically (or at the very least, illustrate the feasible region of the problem).
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